Interaction between 1,1'-Biacenaphthene-2,2'-diyl and Dibromomethane. Decay Kinetics in Mixed Solvents

Harumichi Kobashi* and Hiroshi Masamoto

Department of Chemistry, Faculty of Engineering Gunma University, Kiryu, Gunma 376

(Received December 17, 1984)

Interaction of the triplet biradical, 1,1'-biacenaphthene-2,2'-diyl (BR) with dibromomethane has been examined by means of transient absorption measurements and kinetic analysis. The absorption spectrum of BR in CH₂Br₂ shows a red shift compared with those in other solvents with various polarities. The spectral result indicates that the red shift is not due to effect of solvent polarity but due to existence of weak electronic interaction acting directly between BR and CH₂Br₂. The nonlinear dependence of decay rates of BR upon [CH₂Br₂] is interpreted in terms of a simple kinetic model of solvation based on solvent replacement between cage and bulk.

In a previous paper, it was reported that BR interacts with halogenated compounds to cause intersystem crossing (ISC) through spin-orbit (SO) interaction enhanced by heavy atoms, prior to chemical reactions.¹⁾ At the same time, a complex formation

RR

between BR and the quencher C2H5I was suggested from a result of only kinetic analysis for decay rates of BR as a function of [C₂H₅I]. However, no spectroscopic evidence for the complex formation was obtained, because the intensity of BR absorption became too weak to observe the spectrum of the complex with increasing the quencher concentration. For the type II biradicals, on the other hand, it has been considered that a complex formation does not contribute to the enhancement of ISC induced by di-t-butyl nitroxide or oxygen through spin-spin interaction.2 BR has two aromatic rings which are apt to form electron donor-acceptor (EDA) complexes with several quenchers. Therefore, in order to elucidate the decay behavior of BR, it will be important to examine whether direct electronic interaction concerns the biradical decay or not.

In this paper we examine in detail the interaction between BR and CH₂Br₂ in the wide range of [CH₂Br₂], since the decay time of BR lies in a measurable time range of our experimental apparatus even in neat solvent of CH₂Br₂. Results give spectral evidence for the existence of an electronic interaction different from solvent polarity effect. In addition, a simple solvation model is proposed for interpreting the decay rates as a function of [CH₂Br₂].

Experimental

The transient absorption spectra were observed by means of a 347 nm ruby-laser photolysis at room temperature.³⁾

For kinetic analysis, the decay times of BR were measured at several temperatures controlled by circulating thermostated water into a cell holder.

trans-Dimer of acenaphthylene (t-D) as a source material of BR was synthesized and purified by the same methods as described before.³⁾ Commercially available dibromomethane (Wako, GR grade) was taken out from an ampoule and immediately used without further purification. Zone-refined benzophenone (BP) was used as a triplet sensitizer. The concentrations of t-D and BP were both ca. 4×10^{-3} M (1 M=1 mol dm⁻³). All solutions were degassed by the freeze-pump-thaw method.

Results and Discussion

Figure 1 shows time-resolved absorption spectra obtained for the BP-t-D system in several solvents. where the absorbances in the wavelength region ≤400 nm observed at the earlier time after excitation are omitted for simplicity. The initially observed absorptions at 530 nm and around 450 nm are due to ³BP and ³t-D, respectively.³⁾ After disappearance of ³BP and ³t-D, BR exhibits characteristic absorption bands at 379±1 nm in toluene (dielectric constant at 20 °C: ε =2.38), pyridine (ε =13.23), chlorobenzene (ε =5.71), and dichloromethane (ε =9.14) as well as in benzene (ε =2.28), dichloromethane, and 1.4-dioxane (ε =2.29) reported previously.^{1,3)} Although no spectra are given here, BR also shows the absorption maxima at 379 ± 1 nm both in 1,2-dichloroethane (ε =10.66) and bromobenzene (ε =5.39). In dibromomethane solvent (ε =7.04), however, the absorption of BR is red-shifted by ca. 5 nm (Fig. 1(5)). Then, it is clear that the red shift is not due to the effect of solvent polarity but due to a weak electronic interaction between BR and CH₂Br₂. An origin of the interaction is probably charge-transfer (CT) interaction as in the systems of anthracene-CCl4 and etc.4) The quenching of BR by CH2Br2 in both CH2Cl2 and C6H6 were followed by lifetime measurements at 380 nm over the wide range of [CH₂Br₂]. Figure 2 shows the Stern-Volmer plots in C₆H₆. Each quenching curve bends downward similar to that by C₂H₅I in C₆H₆ but the deviation from a straight line is remarkable only in

much higher concentration region for the quencher CH₂Br₂ than for C₂H₅I. In the present case, therefore, an influence of change of medium properties by the addition of CH₂Br₂ could not be neglected for analyzing the quenching curve. Then, it is supposed that a complex formation is unrealistic, although the curvatures fit fairly well to Eq. 4 in Ref. 1 based on the complex formation mechanism. In order to obtain a more precise information about this circumstance, highly resolved absorption spectra around 380 nm were measured in mixed solvents of CH₂Cl₂ plus CH₂Br₂ and C₆H₆ plus CH₂Br₂ as well as in CH₂Cl₂, C₆H₆, and CH₂Br₂. The results are given in Fig. 3. The spectrum of BR shows gradual red-shift with increasing [CH₂Br₂] in each solvent system (CH₂Cl₂ or C₆H₆). But, no spectrum with two absorption peaks indicating firmly the simultaneous existence of both free and complexed BR was observed in the mixed solvents of any composition of CH2Br2 so far as we examined (at 3, 5, and 10 M of CH₂Br₂). Hence, it seems plausible to consider that the red shift and nonlinear quenching curves are due to a

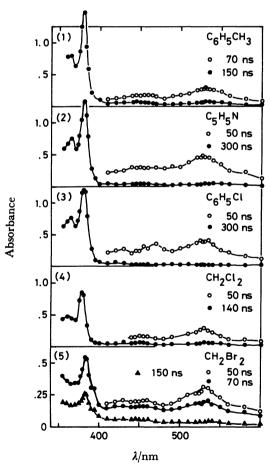


Fig. 1. Transient absorption spectra obtained in the solvents; (1) toluene, (2) pyridine, (3) chlorobenzene, (4) dichloromethane, and (5) dibromomethane. Delay times after the start of laser excitation are indicated in the figure.

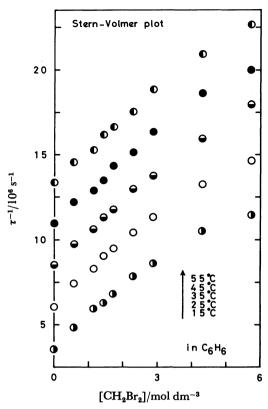


Fig. 2. Stern-Volmer plots for the CH₂Br₂/C₆H₆ system observed at several temperatures. The origin of ordinate is shifted upward by 2.5 each in the order of measurements at 15, 25, 35, 45, and 55 °C.

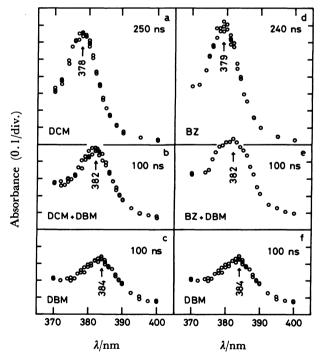
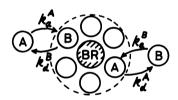


Fig. 3. Absorbance spectra of BR in (a) CH₂Cl₂, (b) CH₂Cl₂+(10 M) CH₂Br₂, (c) CH₂Br₂, (d) C₆H₆, (e) C₆H₆+(10 M) CH₂Br₂, and (f) CH₂Br₂: DCM=CH₂-Cl₂, BZ=C₆H₆, DBM=CH₂Br₂. Delay times after the start of laser excitation are indicated in the figure.

continuous change of properties of medium surrounding BR but not due to formation of a complex with fixed geometry and stoichiometry.


Then, we employ a simple solvation model developed below for analyzing the decay behavior of BR in the mixed solvents. We assume the following conditions in the model: (i) The decay rate constant of BR (τ^{-1}) is determined by the composition of a solvent cage surrounding BR, as expressed by Eq. 1.

$$\tau^{-1} = \theta_{A}\tau_{A}^{-1} + \theta_{B}\tau_{B}^{-1} \tag{1}$$

where τ_A and τ_B are the lifetimes of BR in neat solvent A and B, respectively and θ_A and θ_B denote the mole fractions of component solvents A and B, respectively, in the solvent cage. Namely, Eq. 1 indicates the additivity between τ_A^{-1} and τ_B^{-1} . (ii) The solvent composition of the cage is proportional to that of the bulk solution in an equilibrium state of solvation;

$$\theta_{\rm A}/\theta_{\rm B} = K(\chi_{\rm A}/\chi_{\rm B}), \tag{2}$$

where χ_A and χ_B are the mole fractions of A and B, respectively, in the bulk solution and K is the proportionality constant. Equation 2 can be derived by assuming a solvent replacement between one component molecule (A or B) in the solvent cage and another component one (B or A) in the bulk. This situation is schematically shown as follows:

where k_a^i and k_d^i are the rate constants of solvation (or association) to BR and escape (or dissociation) from the cage, respectively, for *i*-th component molecule. When the equilibrium as to the solvent replacement is attained, the rate of solvation will be equal to the rate of escape for each component under the given conditions; *i.e.*, $k_a^A \theta_B[A] = k_d^A \theta_A[B]$ or $k_d^B \theta_B[A] = k_a^B \theta_A[B]$. These two equations are rearranged to Eq. 3;

$$\frac{\theta_{A}}{\theta_{B}} = \frac{k_{a}^{A}}{k_{d}^{A}} \cdot \frac{\chi_{A}}{\chi_{B}} = \frac{k_{d}^{B}}{k_{a}^{B}} \cdot \frac{\chi_{A}}{\chi_{B}}.$$
 (3)

Therefore, K in Eq. 2 is equal to k_a^A/k_d^A or k_d^B/k_a^B . By combining Eq. 1 with Eq. 2 using the relations $\theta_A+\theta_B=1$ and $\chi_A+\chi_B=1$, one can obtain Eq. 4,

$$\frac{1}{\tau} = \frac{1}{\tau_B} + \frac{K\chi_A}{1 + (K-1)\chi_A} \left(\frac{1}{\tau_A} - \frac{1}{\tau_B}\right). \tag{4}$$

Equation 4 shows that τ^{-1} is a nonlinear function of

 χ_A , involving only one unknown parameter K if τ_A and τ_B values are known. Rearrangement of Eq. 4 yields the following linear expressions with respect to $X(\equiv \chi_A/\chi_B)$, which are mathematically equivalent to one another.

$$(\tau^{-1} - \tau_B^{-1})^{-1} = (\tau_A^{-1} - \tau_B^{-1})^{-1} \{ 1 + (KX)^{-1} \}$$
 (5)

$$X^{-1}(\tau^{-1} - \tau_B^{-1}) = K(\tau_A^{-1} - \tau^{-1})$$
 (6)

$$X(\tau^{-1}-\tau_{B}^{-1})^{-1} = (\tau_{A}^{-1}-\tau_{B}^{-1})^{-1}(X+K^{-1})$$
 (7)

Equation 5 is identical in form to those derived by Ketelaar *et al.* for analyzing EDA complex formation⁵⁾ and by Ware *et al.* for exciplex formation.⁶⁾ Equation 6 is formally identical to those employed by Foster *et al.* for EDA complex systems⁷⁾ and by Rayner and Wyatt for an acid-base equilibrium in the excited state.⁸⁾ Equation 7 has also the same form as that described by Scott for EDA complexes.⁹⁾ These equations are very useful, since they do not need the knowledge about τ_A value.

Here, we analyze the decay times of BR using Eqs. 5, 6, and 7, because we can estimate the lifetime of BR in neat CH_2Br_2 simultaneously with $K.^{10}$ It was found that the observed lifetimes (τ) in the solvent systems of CH₂Br₂ (component A)/C₆H₆ (component B) and CH₂Br₂ (A)/CH₂Cl₂ (B) follow the relations, Eqs. 5, 6, and 7 with correlation factors better than those in the complex formation model. The results obtained for the CH2Br2/C6H6 mixture are shown in By using the method of weighted least square,11) each K and τ_A values obtained from these plots are, as a matter of course, in agreement with one another. Table 1 lists the parameter values obtained at several temperatures. According to the van't Hoff equation, the temperature dependence of K yields ΔH (-6.4±1.1 kJ mol⁻¹) and ΔS (-14±4 J mol⁻¹ K⁻¹) for the solvation of CH₂Br₂ in the place of C₆H₆. In the CH₂Br₂ (A)/CH₂Cl₂ (B) mixture, K and τ_A values were also estimated to be 2.5 \pm 0.2 and 70±6 ns respectively at 20 °C.

The estimated τ_A values for both solvent systems agree with each other and are in fair agreement with the observed τ_A (84±3 ns at 25 °C).¹²⁾ Therefore, the kinetic model used here is consistent. The small values of ΔH and ΔS seem to support that this model is more appropriate than the (1:1) complex forma-

Table 1. K and τ_A (in ns) values in the ${\rm CH_2Br_2(A)/C_6H_6(B)}$ system at several temperatures (t in $^{\circ}{\rm C}$)

t	K	$ au_{ m A}$
15	2.6±0.3	71± 8
25	2.6 ± 0.5	64 ± 10
35	2.2 ± 0.5	62 ± 11
45	2.0 ± 0.5	60 ± 10
55	1.9 ± 0.5	58 <u>+</u> 13

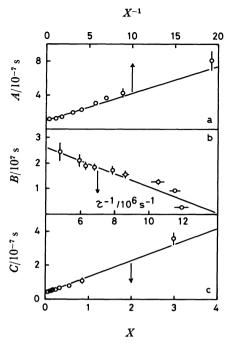


Fig. 4. Plots of the relations corresponding to Eqs. 5, 6, and 7 for the CH₂Br₂/C₆H₆ system at 15 °C. The abbreviated functions in the ordinate:

(a) $A = (\tau^{-1} - \tau_0^{-1})^{-1}$; (b) $B = X^{-1}(\tau^{-1} - \tau_0^{-1})$;

(c) $C = X(\tau^{-1} - \tau_0^{-1})^{-1}$.

tion model which, in most cases, accompanies rather large values of $\Delta H(ca.\ 20\ k\ J\ mol^{-1})$ and $\Delta S(ca.\ 40\ J\ K^{-1}\ mol^{-1}).^{7)}$ It is then implied that BR is likely to be solvated by $\rm CH_2Br_2$ approximately 2.5 times stronger than by $\rm C_6H_6$ or $\rm CH_2Cl_2$, since K is $ca.\ 2.5$ in both solvent systems at ordinary temperatures. A different approach to solvation has been done for fluorescence frequency shift and quenching in mixed solvents by Lippert and Moll¹³⁾ and Kokubun¹⁴⁾ based on the Langmuir adsorption isotherm. They derived a kinetic equation which has also the same form as the present Eq. 5, if ψ or [Q] in their expression is replaced by X.

It should be noted further that a change in hydrodynamic properties of solvent mixtures is not negligible when the viscosity and molecular volume of A are largely different from those of B. If K is replaced by $(\eta_A V_A/\eta_B V_B)$ exp γ_A , Eq. 4 becomes identical to the expression derived by Stevens et al. based on the cage displacement model. ¹⁵⁾ Here, η_i and V_i are the viscosity coefficient and the molecular volume of *i*-th component solvent, respectively, and γ_A is the index of preferential solvation of A in place of B. In the present cases, $\eta_A V_A/\eta_B V_B = 1.26$ for A=CH₂Br₂ and B=Ch₂Cl₂ at 20 °C. By using these values, $\gamma_A = 0.72$ for the CH₂Br₂/C₆H₆ system and $\gamma_A = -0.011$ for the CH₂Br₂/CH₂Cl₂ system are obtained. According-

ly, the preferential solvation by CH₂Br₂ should be taken into account for the BR quenching in the CH₂Br₂/C₆H₆ system and need not almost completely for that in the CH₂Br₂/CH₂Cl₂ system, in addition to the change of hydrodynamic properties.

As for BR decay, an important fact is that there exists the direct electronic interaction between BR and CH₂Br₂, which is able to cause the red shift of the BR spectrum but not so strong as a complex formation is confirmed spectroscopically. In conclusion, it is considered that the BR quenching is enhanced by SO interaction¹⁾ perturbed by the weak electronic interaction, probably CT interaction, between BR and CH₂Br₂ in the solvent cage.

One of the authors (H.K.) expresses his thanks to Prof. Hiroshi Kokubun at Tohoku University for valuable suggestions in setting the kinetic model and to Prof. Haruo Shizuka at this laboratory for kind advice.

References

- 1) H. Kobashi, R. Kondo, H. Ikawa, and T. Morita, *Bull. Chem. Soc. Jpn.*, **57**, 1197 (1984).
- 2) J. C. Scaiano, *Tetrahedron*, **38**, 819 (1982); M. V. Encinas and J. C. Scaiano, *J. Photochem.*, **11**, 241 (1979).
- 3) H. Kobashi, H. Ikawa, R. Kondo, and T. Morita, *Bull. Chem. Soc. Jpn.*, **55**, 3013 (1982).
- 4) W. R. Ware and C. Lewis, J. Chem. Phys., 57, 3546 (1972) and references therein.
- 5) J. A. A. Ketelaar, C. van de Stolpe, A. Goudsmit, and W. Dzcubas, *Recl. Trav. Chim. Pays-Bas Belg.*, 71, 1104 (1952).
- 6) W. R. Ware, D. Watt, and J. D. Holmes, J. Am. Chem. Soc., **96**, 7853 (1974).
- 7) R. Foster, D. Ll. Hammick, and A. A. Wardley, *J Chem. Soc.*, 3817 (1953); R. Foster, "Organic Charge-Transfer Complexes," Academic Press, London (1969), Chap. 6.
- 8) D. M. Rayner and P. A. H. Wyatt, J. Chem. Soc., Faraday Trans. 2, 70, 945 (1974).
- 9) R. L. Scott, Recl. Trav. Chim. Pays-Bas Belg., 75, 787 (1956).
- 10) This analysis allows us to compare the estimated τ_A value with the observed one. Analysis by Eq. 4 was not chosen for fear that the observed lifetime τ_A in CH₂Br₂ might involve the contribution of the decay time of precursor 3t -D.
- 11) A. Yoshimura, Journal of the Association of Personal Computer for Chemists, 6, 133 (1984). Thanks are due to Dr. A. Yoshimura at Osaka University for sending us a revised program.
- 12) The small difference between the estimated and observed τ_A values might be due to a little contribution of the decay rate of 3t -D.
- 13) E. Lippert and F. Moll, Z. Elektrochem., 58, 718 (1954).
- 14) H. Kokubun, Bull. Chem. Soc. Jpn., 42, 919 (1969).
- 15) B. Stevens, K. L. Marsh, and M. A. Sylvia, J. Phys. Chem., 88, 669 (1984), and references cited therein.